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Abstract: The parareal algorithm is a method to solve time dependent problems parallel in time. 
The focus of this paper is analyzing to the results of the solution of partial differential equations 
(PDEs) by the time parallel coupling Kansa’s method using radial basis functions. Numerical 
examples demonstrate the advantages of the proposed methods for computational effort and the 
accuracy in the numerical solution. 

1. Introduction  
Kansa’s method [3] (also namely unsymmertic collocation method) to solve PDEs is very 

attractive due to the fact that it is a true meshless method  and spatial dimension independent, which 
can easily be extended to solve high dimensional problems. Stability and convergence analysis was 
proposed by Schaback [7, 8]. 

The parareal algorithm was presented by Lions, Maday, and Turinici in [1] as a numerical 
method to solve evolution problems in parallel and was extensively analyzed in [5]. The algorithm 
has received a lot of attention over the past few years, especially in the domain decomposition 
literature [4]. The idea of time parareal algorithm is that we can solve a  time-dependent problem, 
then, compute the numerical solution on each sub-domain in time with finer time step 
independently. Finally, a correction is designed to match the exact solution. The same is true for 
spatial parallelism. 

What’s more, there are many scholars or researchers who have done a lot of research on the 
parallel time coupling  with other methods. The domain decomposition algorithm [2] combine with 
Kansa’s method was proposed by Y. Duan, P. F. Tang and T. Z. Huang, which show that this 
method can reduce the number of conditions of the collocation matrix in some extent, and improve 
the solving speed. At the same time, Fasshauer  G. E. [6] reduced the number of matrix conditions 
by preconditioning technology. 

This paper is devoted to analyzing the results of the solution of  PDEs by the time  parallel 
coupling Kansa’s method. One of its advantages is that the solution of every moment can be 
obtained. Another advantage is that it is suitable for computing large-scale real-time problems, 
which can be miniaturized to achieve the purpose of reducing the number of conditions. This paper 
is organized as follow: section II is in detail devoted to introduce Kansa’s method using RBFs. In 
section III we introduce correlation algorithm. Numerical examples are given in section IV. A 
conclusion is made at the end of this paper. 

2. Kansa’s method using RBFs. 
In this part, we give a theoretical introduction to Kansa’s method with the general elliptic 

boundary value problems 

   .

nLu f in R
Bu g on

 = Ω∈


= ∂Ω

，
                                          (1) 

Where Ω  is a n -dimensional domain, with a boundary ∂Ω . ,f  g  is a given function. The 
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operators ,L  B  are any elliptic operator and some boundary operator. For a given set of distinct 
centers 1{ , , }nx x ⊂ Ω , 1{ , , }n Nx x+ ⊂ ∂Ω , and a radial basis functions ( )rφ . Let the approximated 

solution of equation (1)  to be ( )= ( )N
k kk

u x x xλ φ −∑ , here ⋅  is the Euclidean norm. Where iλ are 

undetermined coefficients. Substitute ( )= ( )N
k kk

u x x xλ φ −∑  into (1) , then get: 
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Substitute n points in Ω and N n−  points in ∂Ω  into the first formula and the second formula of 
(2)  respectively, and obtain 
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  (3) 

Then , we get matrix form system 

.A =bλ                                              (4) 

Where 1 2=[ , , , ]T
Nλ λ λ λ ， 1[ ( ) ( )]T

Nb f x g x= ， ， ， 

( ) ( ) , 1, 2, .
T

i j i jL x x B x x i j Nφ φ = − − = A ，  

The linear system induced by Kansa’s method using RBFs just have to solve for the coefficients 
.λ  Once the coefficient iλ are solved, the approximate solution at any Ω is given by the interpolation 

formula ( ).u x  The most widely used  RBFs are show in Table I. But there are other radial basis 
functions that are not listed due to space issues. In our numerical examples we have used the 
Multiquadric (MQ), which have the coefficient c  called the shape parameter. 

Table I. Radial Basis Functions 

RBF Definition 
Multiquadric (MQ) 2 2( , ) r cr cφ +=  

Inverse Multiquadric (IMQ) 2 2( , ) 1/ r cr cφ +=  
Gaussian (GA) 2( )( , ) crr c eφ −=  

Thin- Plate Splines (TPS) log( ), 2, 4,nr r n =   
Smooth Splines (SS) , 1,3,5,nr n =   

3. Numerical algorithm 
The time domain decomposition method is described below as the model: 
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2 0
0

( , ,0) 0.

tau u f in at t T
Bu g on at t T
u x y h in at t

 −∇ = Ω < <


= ∂Ω ≤ <
 = Ω =

，

，                (5) 

Algorithm:  
Step 1: For coarse time step ∆T , we use implict scheme to solve the equation (5) : 
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(6) 

(6) is solved by the Kansa’s method using RBFs. 
Step 2: Solve N independent problems in each time interval 1[ , ]n nT T + ， with the following form: 
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by fine step and meshless method with the same as step 1. 
Step 3: Defined the jump on nT by n

k
nn

k
n
k UTuS −= − )(1  

and solve the following equation 
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Step 4: Let n
k

nn
k

n
k TuU δ+= −
+ )(1

1 , then solve 
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  (9) 

On each time sub-interval 1[ , ]n nT T + ， by the same method with step 2: Once a tolerance is 
designed, we can obtain the numerical solution of the original problem after several iterations. 

4. Numerical examplems 
In this section our goal is to use the above algorithm to solve heat conduction partial differential 

equations by using the above algorithm, get the numerical solution, and analyze their calculation 
quantity and accuracy .  
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4.1 Example 1 one dimensional case: 
Consider the following linear heat conduction equations in one-dimension : 

2( , ) =0 0 1, 0 0.2,u x t u x t
t

∂
−∇ < < < <

∂
，         (10)  

with boundary and initial conditions 

(0, ) (1, ) 0, 0 0.2,
( , ) sin( ), =0 0< 1.

u t u t t
u x t x t xπ

= = < <
= <，

                      (11)  

Where 2∇ is usually the Laplace operator and let coarse time step to be T∆ , the interval [0,0.2] is 
divide N subdomain , the fine time step in the subdomain is taken as .t∆  200 nodes are uniformly 
distributed in [0,1]  and taking ( , )r cφ =  2 2+cr as the radial basis function. Here c =  0.1266 . 

Analytical solution is 
2

( , ) sin( ).tu x t e xπ π−= The considered errors are 

2
1
( _ ( ) _ ( , ))

MSR N

N
i ii

u exact x t u num x t
=

−
= ∑ ，

， 

MAX max _ ( ) _ ( , ) .i iu exact x t u num x t= −，  

Table II. Time 0.05t = and Error  with the  change of N. 
N MSR MAX Cond 
10 0.0042 0.0059 1.3136E+14 
20 0.0020 0.0029 2.6397E+14 
40 0.0010 0.0015 5.2685E+14 
80 0.0005 0.0007 1.0385E+15 

160 0.0003 0.0004 2.0337E+15 

Table III. Time t= 0.1t =  and Error with the change of N. 
N MSR MAX Cond 
10 0.0050 0.0071 1.3136E+14 
20 0.0025 0.0036 2.6397E+14 
40 0.0013 0.0018 5.2685E+14 
80 0.0006 0.0009 1.0385E+15 

160 0.0003 0.0005 2.0337E+15 

Table IV. Time 0.15t =  and Error with the change of N. 
N MSR MAX Cond 
10 0.0015 0.0021 1.3136E+14 
20 0.0023 0.0033 2.6397E+14 
40 0.0012 0.0017 5.2685E+14 
80 0.0006 0.0008 1.0385E+15 

160 0.0003 0.0004 2.0337E+15 

Table V. 0.2t = and Error with the change of N. 
N MSR MAX Cond 
10 0.0038 0.0054 1.3136E+14 
20 0.0019 0.0027 2.6397E+14 
40 0.0009 0.0014 5.2685E+14 
80 0.00048 0.00068 1.0385E+15 

160 0.00023 0.00033 2.0337E+15 
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Table II-V is the numerical result error analysis at time 0.05t = , 0.1t = , 0.15t =  and 0.2t =  
respectively, which indicates that one of the advantages of time domain decomposition is that the 
solution at each time can be obtained. 

4.2 Example 2 two dimensional case: 
Consider the following linear heat conduction equations in two-dimension: 

2( , , )16 0, ( , ) , 0,

(0, , ) (1, , ) 0, 0 1, 0,
( , ,0) sin( ) cos( ), 0.

u x y t u x y t
t

u y t u y t y t
u x y x y tπ π

∂ −∇ = ∈Ω > ∂
= = < < >

 = =


       (12) 

Where =[0,1]*[0,1]Ω , 2∇  denote Laplace operator. In the same time, following the method of 
example 1 to solve the formula (12) . Let coarse time step to be T=T/N∆ , the interval [0,8] is divide 
N subdomain  and the fine time step in the subdomain is taken as / *t T N Nn∆ = . Where T is the 
total time， N is the number of partitions, Nn  is the number of centers. 400 nodes are uniformly 

distributed in [0,1]*[0,1]  and taking 2 2( , ) +cr c rφ = as the radial basis function . Here 0.1.c =  

Analytical solution of this question is 
2 /8 sin( ) cos( ).u e x yπ π π−= （ ）t The error representation is the 

same as the example one. 

Table VI. 80N =  and Error with the change of Time 

Time(t/s) MSR MAX I Cond 
0.1 0.0033 0.0097 5 2.8738E+06 
1 0.0028 0.0055 5 2.8738E+06 
2 0.0014 0.0025 5 2.8738E+06 
4 0.0002 0.0003 5 2.8738E+06 
6 2.8797E-05 4.4194E-05 5 2.8738E+06 
8 3.2624E-06 4.9132E-06 5 2.8738E+06 

 
Figure 1. 0.001t =  The exact solution distribution. 

 
Figure 2. 0.001t =  Numerical solution distribution. 
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Figure 3. 0.001t =  Absolute error distribution. 

From Fig. 1 to Fig. 3 we know that the time domain decomposition method mentioned above is 
used to solve the partial differential equation, and the numerical solution is very close and the error 
is relatively small. At the same time, this method can know the numerical solution at each moment. 
The second advantage is that it is suitable for computing large-scale real-time problems, which can 
be miniaturized to achieve the purpose of reducing the number of conditions. 

4.3 Example 3 two dimensional case: 

2

1 2

1 2

10000 0 ( , ) 0 18

100  or 0 18

0 0 0 18

0 0 0 18

3 5( , ,0) 80cos cos 100 ( , ) 0.
2 2

u u x y t
t

u x D y D t
u x t
x
u y t
y

u x y x y x y t
D D
π π




∂ −∇ = ∈Ω < < ∂
 = = = ≤ <
∂ = = ≤ <∂
∂ = = ≤ <∂

    
= + ∈Ω =    

    

，

 ，

，

，

 

Where { }21 0,0|),( DyDxyx <<<<=Ω , 4.01 =D , 2.02 =D , Analytical solution of this 
problem is 

2 215 25 15 2580[ ( ) ( ) )( )]cos( ) cos( ) 100.
4 2 10000 4 2

tu x y x yπ π= − + +  Will [ ]0,12 be divided into 12 districts, 

namely, the step size 1=∆T , then solve the  problem in each district, which means that each district 
is divided into 50 equal parts. Taking 100 evenly distributed collocation points in Ω  . A_err and 
R_err  stands for absolute error and relative error, respectively. 

Table VII show that the maximum relative error of the numerical solution is not exceeded %3.1  
when the time parallel algorithm is applied to solve example 3, which indicates that the time 
domain decomposition algorithm to solve the initial boundary value problem of the heat conduction 
equation is effective and feasible. 

Table VII. The error of the numerical solution at the 800 points. 

Time 1 2 3 4 5 6 
A_err 0.5773 0.6830 0.7683 0.8262 0.8599 0.9290 
R_err 0.0091 0.0113 0.0121 0.0124 0.0123 0.0124 
Time 7 8 9 10 11 12 
A_err 0.9737 1.0082 1.0304 1.0410 1.0533 1.0571 
R_err 0.0122 0.0119 0.0117 0.0115 0.0115 0.0116 

5. Conclusion 
In this paper, we use the parallel algorithm to couple Kansa's method to solve PDE with boundary 

condition, initial condition and Mixed boundary condition. It can be clearly seen from the numerical 
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examples that this method can improve the precision of Kansa’s method and can know the numerical 
solution at each moment. Secondly, it is suitable for computing large-scale real-time problems, 
which can be miniaturized to achieve the purpose of reducing the number of conditions and the 
advantages of the improved algorithm are proved by numerical examples.         
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